Normal view MARC view ISBD view

Essentials of computational chemistry : theories and models / Christopher J. Cramer

Cramer, Christopher J.
Material type: materialTypeLabelBook; Format: print Publisher: West Sussex : John Wiley & Sons, 2004Edition: 2nd ed.Description: XX, 596 p. ; 25 cm.ISBN: 0-470-09182-7.Subject(s): Química computacional
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Home library Call number Status Loan Date due Barcode Item holds Course reserves
Manuales (7 días) 02. BIBLIOTECA CAMPUS PUERTO REAL
544/CRA/ess (Browse shelf)   Shelving location | Bibliomaps® BIBLIOG. RECOM. 3744446933
Manuales (7 días) 02. BIBLIOTECA CAMPUS PUERTO REAL
544/CRA/ess (Browse shelf)   Shelving location | Bibliomaps® BIBLIOG. RECOM. 3744446924

QUÍMICA FÍSICA II GRADO EN QUÍMICA Asignatura actualizada 2017-2018

Monografías 03. BIBLIOTECA INGENIERÍA PUERTO REAL
544/CRA/ess (Browse shelf)   Shelving location | Bibliomaps® PREST. LIBROS 3742350583
Total holds: 0

Enhanced descriptions from Syndetics:

Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.

Bibliografía. - índice

Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.

Table of contents provided by Syndetics

  • Preface to the First Edition
  • Preface to the Second Edition
  • Acknowledgments
  • 1 What are Theory, Computation, and Modeling?
  • 1.1 Definition of Terms
  • 1.2 Quantum Mechanics
  • 1.3 Computable Quantities
  • 1.3.1 Structure
  • 1.3.2 Potential Energy Surfaces
  • 1.3.3 Chemical Properties
  • 1.4 Cost and Efficiency
  • 1.4.1 Intrinsic Value
  • 1.4.2 Hardware and Software
  • 1.4.3 Algorithms
  • 1.5 Note on Units
  • Bibliography and Suggested Additional Reading
  • References
  • 2 Molecular Mechanics
  • 2.1 History and Fundamental Assumptions
  • 2.2 Potential Energy Functional Forms
  • 2.2.1 Bond Stretching
  • 2.2.2 Valence Angle Bending
  • 2.2.3 Torsions
  • 2.2.4 Van der Waals Interactions
  • 2.2.5 Electrostatic Interactions
  • 2.2.6 Cross Terms and Additional Non-bonded Terms
  • 2.2.7 Parameterization Strategies
  • 2.3 Force-field Energies and Thermodynamics
  • 2.4 Geometry Optimization
  • 2.4.1 Optimization Algorithms
  • 2.4.2 Optimization Aspects Specific to Force Fields
  • 2.5 Menagerie of Modern Force Fields
  • 2.5.1 Available Force Fields
  • 2.5.2 Validation
  • 2.6 Force Fields and Docking
  • 2.7 Case Study: (2R*,4S*)-1-Hydroxy-2,4-dimethylhex-5-ene
  • Bibliography and Suggested Additional Reading
  • References
  • 3 Simulations of Molecular Ensembles
  • 3.1 Relationship Between MM Optima and Real Systems
  • 3.2 Phase Space and Trajectories
  • 3.2.1 Properties as Ensemble Averages
  • 3.2.2 Properties as Time Averages of Trajectories
  • 3.3 Molecular Dynamics
  • 3.3.1 Harmonic Oscillator Trajectories
  • 3.3.2 Non-analytical Systems
  • 3.3.3 Practical Issues in Propagation
  • 3.3.4 Stochastic Dynamics
  • 3.4 Monte Carlo
  • 3.4.1 Manipulation of Phase-space Integrals
  • 3.4.2 Metropolis Sampling
  • 3.5 Ensemble and Dynamical Property Examples
  • 3.6 Key Details in Formalism
  • 3.6.1 Cutoffs and Boundary Conditions
  • 3.6.2 Polarization
  • 3.6.3 Control of System Variables
  • 3.6.4 Simulation Convergence
  • 3.6.5 The Multiple Minima Problem
  • 3.7 Force Field Performance in Simulations
  • 3.8 Case Study: Silica Sodalite
  • Bibliography and Suggested Additional Reading
  • References
  • 4 Foundations of Molecular Orbital Theory
  • 4.1 Quantum Mechanics and the Wave Function
  • 4.2 The Hamiltonian Operator
  • 4.2.1 General Features
  • 4.2.2 The Variational Principle
  • 4.2.3 The Born-Oppenheimer Approximation
  • 4.3 Construction of Trial Wave Functions
  • 4.3.1 The LCAO Basis Set Approach
  • 4.3.2 The Secular Equation
  • 4.4 H?uckel Theory
  • 4.4.1 Fundamental Principles
  • 4.4.2 Application to the Allyl System
  • 4.5 Many-electron Wave Functions
  • 4.5.1 Hartree-product Wave Functions
  • 4.5.2 The Hartree Hamiltonian
  • 4.5.3 Electron Spin and Antisymmetry
  • 4.5.4 Slater Determinants
  • 4.5.5 The Hartree-Fock Self-consistent Field Method
  • Bibliography and Suggested Additional Reading
  • References
  • 5 Semiempirical Implementations of Molecular Orbital Theory
  • 5.1 Semiempirical Philosophy
  • 5.1.1 Chemically Virtuous Approximations
  • 5.1.2 Analytic Derivatives
  • 5.2 Extended Huckel Theory
  • 5.3 CNDO Formalism
  • 5.4 INDO Formalism
  • 5.4.1 INDO and INDO/S
  • 5.4.2 MINDO/3 and SINDO1
  • 5.5 Basic NDDO Formalism
  • 5.5.1 MNDO
  • 5.5.2 AM1
  • 5.5.3 PM3
  • 5.6 General Performance Overview of Basic NDDO Models
  • 5.6.1 Energetics
  • 5.6.2 Geometries
  • 5.6.3 Charge Distributions
  • 5.7

Author notes provided by Syndetics

Christopher Cramer , Professor of Computational Chemistry Department of Chemistry, University of Minnesota,Minneapolis, USA

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha