Normal view MARC view ISBD view

Concise physical chemistry / Donald W. Rogers

Rogers, Donald W.
Material type: materialTypeLabelBook; Format: print Publisher: New Jersey : John Wiley & Sons, 2011Description: XXIV, 378 p. : gráf. ; 24 cm.ISBN: 978-0-470-52264-6.Subject(s): Química física
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Home library Call number Status Loan Date due Barcode Item holds
Monografías 02. BIBLIOTECA CAMPUS PUERTO REAL
544/ROG/con (Browse shelf) Available   Shelving location | Bibliomaps® PREST. LIBROS 3743153611
Total holds: 0

Índice

INDICE: Chapter 1 Ideal Gas Laws. 1.1 Empirical Gas Laws. 1.2 The Mole. 1.3 Equations of State. 1.4 Dalton's Law. 1.5 The Mole Fraction. 1.6 Extensive and Intensive Variables. 1.7 Graham's Law of Effusion. 1.8 The Maxwell-Boltzmann Distribution. 1.9 A Digression on 'Space'. 1.10 The Sum-Over-States or Partition Function. Chapter 2 Real Gases: Empirical Equations. 2.1 The van der Waals Equation. 2.2 The Virial Equation: A Parametric Curve Fit. 2.3 The Compressibility Factor. 2.4 The Critical Temperature. 2.5 Reduced Variables. 2.6 The Law of Corresponding States, Another View. 2.7 Compressibility Factors Calculated From the van der Waals Constants. 2.8 Boyle's Law Plot for an Ideal Gas (lower curve) and for Nitrogen (upper curve). 2.9 Determining the Molecular Weight of a Nonideal Gas. Chapter 3 The Thermodynamics of Simple Systems. 3.1 Conservation Laws and Exact Differentials. 3.2 Thermodynamic Cycles. 3.3 Line Integrals in General. 3.3 Pythagorean Approximation to the Short Arc of a Curve. 3.4 Thermodynamic States and Systems. 3.5 State Functions. 3.6 Reversible Processes and Path Independence. 3.7 Heat Capacity. 3.8 Energy and Enthalpy. 3.9 The Joule and Joule-Thomson Experiments. 3.10 The Heat Capacity of an Ideal Gas. 3.11 Adiabatic Work. Chapter 4 Thermochemistry. 4.1 Calorimetry. 4.2 Energies and Enthalpies of Formation. 4.3 Standard States. 4.4 Molecular Enthalpies of Formation. 4.5 Enthalpies of Reaction. 4.6 Group Additivity. 4.7 from Classical Mechanics. 4.8 The Schroedinger Equation. 4.9 Variation of with T. 4.10 Differential Scanning Calorimetry. Chapter 5 Entropy and the Second Law. 5.1 Entropy. 5.2 Entropy Changes. 5.3 Spontaneous Processes. 5.4 The Third Law. Chapter 6 The Gibbs Free Energy. 6.1 Combining Enthalpy and Entropy. 6.2 Free Energies of Formation. 6.3 Some Fundamental Thermodynamic Identities. 6.4 The Free Energy of Reaction. 6.5 Pressure Dependence of the Chemical Potential. 6.6 The Temperature dependence of the Free Energy. Chapter 7 Equilibrium. 7.1 The Equilibrium Constant. 7.2 General Formulation. 7.3 The Extent of Reaction. 7.4 Fugacity and Activity. 7.5 Variation of the Equilibrium Constant with Temperature. 7.6 Computational Thermochemistry. 7.7 Chemical Potential: Nonideal Systems. 7.8 Free Energy and Equilibria in Biochemical Systems. Chapter 8 A Statistical Approach to Thermodynamics. 8.1 Equilibrium. 8.2 Degeneracy and Equilibrium. 8.3 Gibbs Free Energy and the Partition Function. 8.4 Entropy and Probability. 8.5 The Thermodynamic Functions. 8.6 The Partition Function of a Simple System. 8.7 The Partition Function for Different modes of Motion. 8.8 The Equilibrium Constant: A Statistical Approach. 8.9 Computational Statistical Thermodynamics. Chapter 9 The Phase Rule. 9.1 Components, Phases, and Degrees of Freedom. 9.2 Coexistance Curves. 9.3 The Clausius-Cl

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha