Application of nanotechnology in water research / edited by Ajay Kumar Mishra.

Colaborador(es): Mishra, Ajay Kumar, 1965- [editor literario]Tipo de material: TextoTextoDetalles de publicación: Hoboken, New Jersey : Johy Wiley & Sons, Inc., [2014] Descripción: XX, 522 pISBN: 9781118496305 (hardback)Tema(s): Agua -- Purificación | Nanotecnología
Contenidos:
Machine generated contents note: Preface xix Part 1: General 1 1 Nanotechnology and Water: Ethical and Regulatory Considerations 3 Jillian Gardner and Ames Dhai 1.1 Introduction 3 1.2 Ethics and Nanotechnology 4 1.3 Legal and Regulatory Issues and Concerns Related to the Application of Nanotechnology in the Water Sector 14 1.4 Nanotechnology, Water and Human Health Research 17 1.5 Conclusion 18 References 19 2 Nanoparticles Released into Water Systems from Nanoproducts and Structural Nanocomposites Applications 21 James Njuguna, Laura Gendre and Sophia Sachse 2.1 Introduction 21 2.2 Case Study on Polyurethane/Organically-Modified Montmorillonite (PU/OMMT) Nanofoam Nanoparticles in Water Suspension 23 2.3 Methodology 25 2.4 Results and Discussion 27 2.5 Conclusion 32 Acknowledgement 33 References 33 Part 2: Remediation 37 3 Prospects for Immobilization of Microbial Sorbents on Carbon Nanotubes for Biosorption: Bioremediation of Heavy Metals Polluted Water 39 E. Fosso-Kankeu, A.F. Mulaba-Bafubiandi and A.K. Mishra 3.1 Dispersion of Metal Pollutants in Water Sources 40 3.2 Removal of Metal by Conventional Methods 41 3.3 Microbial Sorbents for Removal of Toxic Heavy Metals from Water 42 3.4 Immobilization of Microbial Sorbents on CNTs 50 3.5 Conclusion 54 References 54 4 Plasma Technology: A New Remediation for Water Purification with or without Nanoparticles 63 Pankaj Attri, Bharti Arora, Rohit Bhatia, P. Venkatesu and Eun Ha Choi 4.1 Introduction 63 4.2 Water Purification Using Advanced Oxidation Processes (AOP) 64 4.3 Nanoparticle Synthesis Using Plasma and Its Application towards Water Purification 65 4.4 Application of Plasma for Water Purification 67 4.5 Combined Action of Nanoparticles and Plasma for Water Purification 73 4.6 Conclusion 74 References 75 5 Polysaccharide-Based Nanosorbents in Water Remediation 79 R.B. Shrivastava, P. Singh, J. Bajpai and A.K. Bajpai 5.1 Introduction 80 5.2 Water Pollution 81 5.3 Hazardous Effects of Toxic Metal Ions 85 5.4 Technologies for Water Remediation 87 5.5 Shortcomings of the Technologies Used for Water Remediation 89 5.6 Nanotechnology 90 5.7 Polysaccharides 95 5.8 Advantages of Using Polysaccharides for Removal of Toxic Metal Ions 104 5.9 Brief Review of the Work Done 106 References 107 Part 3: Membranes & Carbon Nanotubes 115 6 The Use of Carbonaceous Nanomembrane Filter for Organic Waste Removal 117 Farheen Khan, Rizwan Wahab, Mohd. Rashid, Asif Khan, Asma Khatoon, Javed Musarrat and Abdulaziz A.Al-Khedhairy 6.1 Introduction 118 6.2 Organic Wastes and Organic Pollutant 120 6.3 Low-Cost Adsorbents 123 6.4 Heavy Metals 124 6.5 Composite Materials 127 6.6 Carbonaceous Materials 128 6.7 Experimental 132 6.8 Nanomaterials 136 6.9 Summary and Future Directions 139 References 139 7 Carbon Nanotubes in the Removal of Heavy Metal Ions from Aqueous Solution 153 M.A. Mamo and A.K. Mishra 7.1 Introduction 153 7.2 Synthesis of CNTs 155 7.3 Functionalization of Carbon Nanotubes 155 7.4 Adsorption of Heavy Metal Ions on Carbon Nanotubes 160 7.5 Competitive Adsorption 165 7.6 Summary and Conclusion 168 References 168 8 Application of Carbon Nanotube-Polymer Composites and Carbon Nanotube-Semiconductor Hybrids in Water Treatment 183 G. Mamba, X.Y. Mbianda and A.K. Mishra 8.1 Introduction 183 8.2 Classification of Dyes 184 8.3 Conventional Treatment Technologies for Textile Effluent 190 8.4 Conclusion 220 Acknowledgements 221 References 222 9 Advances in Nanotechnologies for Point-of-Use and Point-of-Entry Water Purification 229 Sabelo Dalton Mhlanga and Edward Ndumiso Nxumalo 9.1 Introduction 230 9.2 Nanotechnology-Enabled POU/POE Systems for Drinking Water Treatment 233 9.3 Absorptive Nanocomposites Polymers Based on Cyclodextrins 235 9.4 Nanotechnology-Based Membrane Filtration 244 9.5 Ceramic-Based Filters and Nanofibers 254 9.6 Challenges and Opportunities 259 References 262 Part 4: Nanomaterials 269 10 Mesoporous Materials as Potential Absorbents for Water Purification 271 Ephraim Vunain and Reinout Meijboom 10.1 Introduction 271 10.2 Generalized Synthesis of Mesoporous Materials 272 10.3 Common Method of Synthesizing Silicate Mesoporous Molecular Sieves 276 10.4 Adsorption of Heavy Metals 280 10.5 Conclusions 282 References 283 11 Removal of Fluoride from Potable Water Using Smart Nanomaterial as Adsorbent 285 Dinesh Kumar and Vaishali Tomar 11.1 Introduction 286 11.2 Technologies for Defluoridation 289 11.3 Conclusions 303 Acknowledgement 303 References 303 12 Chemical Nanosensors for Monitoring Environmental Pollution 309 Sadanand Pandey and Shivani B Mishra 12.1 Introduction 309 12.2 Conclusion 325 12.3 Challenges and Future Prospect 326 Acknowledgements 327 References 327 13 Reduction of 4-Nitrophenol as a Model Reaction for Nanocatalysis 333 Jihyang Noh and Reinout Meijboom 13.1 Introduction 333 13.2 Kinetic Evaluation and Mechanism of 4-NP Reduction 337 13.3 Effect of Various Conditions 360 13.4 Synthetic Methods of Metal Nanocomposites and Their 4-NP Catalysis 364 13.5 Conclusion 395 References 395 Part 5: Water Treatment 407 14 Doped Diamond Electrodes for Water Treatment 409 Qingyi Shao, Guangwen Wang, Cairu Shao, Juan Zhang and Shejun Hu 14.1 Introduction 410 14.2 Calculation Method 414 14.3 Calculation Results and Discussions 416 14.4 Conclusions 428 References 430 15 Multifunctional Silver, Copper and Zero Valent Iron Metallic Nanoparticles for Wastewater Treatment 435 S.C.G. Kiruba Daniel, S. Malathi, S. Balasubramanian, M. Sivakumar and T. Anitha Sironmani 15.1 Introduction 436 15.2 Metal Nanoparticles and Microbial Inactivation 437 15.3 Metal Nanoparticles for Heavy Metal and Dye Removal 441 15.4 Multifunctional Hybrid Nanoparticles - Ag, Cu and ZVI 443 15.5 Mechanism of Action 445 15.6 Concluding Remarks and Future Trends 448 Acknowledgement 448 References 448 16 Iron Oxide Materials for Photo-Fenton Conversion of Water Pollutants 459 S.A.C. Carabineiro, A.M.T. Silva, C.G. Silva, R.A. Segundo, P.B. Tavares, N. Bogdanchikova, J.L. Figueiredo and J.L. Faria 16.1 Introduction 460 16.2 Experimental 461 16.3 Results and Discussion 463 16.4 Conclusions 471 Acknowledgments 472 References 472 17 Nanomaterials with Uniform Composition in Wastewater Treatment and Their Applications 475 Farheen Khan and Rizwan Wahab 17.1 Introduction 476 17.2 Experimental 488 17.3 Effects of Pollutants on Health and the Environment 490 17.4 Summary and Future Directions 499 References 500 Index 513 .
Resumen: "At the nano size materials often take on unique and sometimes unexpected properties which results in materials being 'tuned' to build faster, lighter, stronger and more efficient devices and systems, as well as new classes of materials. In the water research, nanotechnology is applied to develop more cost-effective and high-performance water treatment systems as well as instant and continuous ways to monitor water quality as well.Nanotechnology in water applications potentially impacts on treatment, remediation, sensing, and pollution prevention. Nanotechnology for water treatment and remediation has the potential to maintain the long-term water quality, availability and viability of water resource. Thus, water via nanotechnology can be reused, recycled, desalinized and also it can detect the biological and chemical contamination at even very low concentration no matter if it is coming from municipal, industrial or man-made waste. Water Research Nanotechnology Applications describes a broad area of nanotechnology and water research where membrane processes (nanofiltration, ultrafiltration, reverse osmosis and nanoreactive membranes) are considered key components of advanced water purification and desalination technologies to remove, reduce or neutralize water contaminants that threaten human health and/or ecosystem productivity and integrity. Various nanoparticles and nanomaterials that could be used in water remediation (zeolites, carbon nanotubes, self-assembled monolayer on mesoporous supports, biopolymers, single-enzyme nanoparticles, zero-valent iron nanoparticles, bimetallic iron nanoparticles, and nanoscale semiconductor photocatalysts) are also discussedt Water-borne infectious diseases as well as water-borne pathogens, microbes and toxicity approach receive attention"-- Provided by publisher.Resumen: "Describes a broad area of nanotechnology and water research where membrane processes are considered key components of advanced water purification and desalination technologies to remove, reduce or neutralize water contaminants that threaten human health and/or ecosystem productivity and integrity. Various nanoparticles and nanomaterials that could be used in water remediation are discussedt Water-borne infectious diseases as well as water-borne pathogens, microbes and toxicity approach receive attention"-- Provided by publisher.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Inicie sesión para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca de origen Signatura URL Estado Fecha de vencimiento Código de barras Reserva de ítems
Monografías 02. BIBLIOTECA CAMPUS PUERTO REAL
628.16/APP (Navegar estantería(Abre debajo)) Texto completo Prestado 31/01/2025 3744027426
Total de reservas: 0

"At the nano size materials often take on unique and sometimes unexpected properties which results in materials being 'tuned' to build faster, lighter, stronger and more efficient devices and systems, as well as new classes of materials. In the water research, nanotechnology is applied to develop more cost-effective and high-performance water treatment systems as well as instant and continuous ways to monitor water quality as well.Nanotechnology in water applications potentially impacts on treatment, remediation, sensing, and pollution prevention. Nanotechnology for water treatment and remediation has the potential to maintain the long-term water quality, availability and viability of water resource. Thus, water via nanotechnology can be reused, recycled, desalinized and also it can detect the biological and chemical contamination at even very low concentration no matter if it is coming from municipal, industrial or man-made waste. Water Research Nanotechnology Applications describes a broad area of nanotechnology and water research where membrane processes (nanofiltration, ultrafiltration, reverse osmosis and nanoreactive membranes) are considered key components of advanced water purification and desalination technologies to remove, reduce or neutralize water contaminants that threaten human health and/or ecosystem productivity and integrity. Various nanoparticles and nanomaterials that could be used in water remediation (zeolites, carbon nanotubes, self-assembled monolayer on mesoporous supports, biopolymers, single-enzyme nanoparticles, zero-valent iron nanoparticles, bimetallic iron nanoparticles, and nanoscale semiconductor photocatalysts) are also discussedt Water-borne infectious diseases as well as water-borne pathogens, microbes and toxicity approach receive attention"-- Provided by publisher.

"Describes a broad area of nanotechnology and water research where membrane processes are considered key components of advanced water purification and desalination technologies to remove, reduce or neutralize water contaminants that threaten human health and/or ecosystem productivity and integrity. Various nanoparticles and nanomaterials that could be used in water remediation are discussedt Water-borne infectious diseases as well as water-borne pathogens, microbes and toxicity approach receive attention"-- Provided by publisher.

Includes bibliographical references and index.

Machine generated contents note: Preface xix Part 1: General 1 1 Nanotechnology and Water: Ethical and Regulatory Considerations 3 Jillian Gardner and Ames Dhai 1.1 Introduction 3 1.2 Ethics and Nanotechnology 4 1.3 Legal and Regulatory Issues and Concerns Related to the Application of Nanotechnology in the Water Sector 14 1.4 Nanotechnology, Water and Human Health Research 17 1.5 Conclusion 18 References 19 2 Nanoparticles Released into Water Systems from Nanoproducts and Structural Nanocomposites Applications 21 James Njuguna, Laura Gendre and Sophia Sachse 2.1 Introduction 21 2.2 Case Study on Polyurethane/Organically-Modified Montmorillonite (PU/OMMT) Nanofoam Nanoparticles in Water Suspension 23 2.3 Methodology 25 2.4 Results and Discussion 27 2.5 Conclusion 32 Acknowledgement 33 References 33 Part 2: Remediation 37 3 Prospects for Immobilization of Microbial Sorbents on Carbon Nanotubes for Biosorption: Bioremediation of Heavy Metals Polluted Water 39 E. Fosso-Kankeu, A.F. Mulaba-Bafubiandi and A.K. Mishra 3.1 Dispersion of Metal Pollutants in Water Sources 40 3.2 Removal of Metal by Conventional Methods 41 3.3 Microbial Sorbents for Removal of Toxic Heavy Metals from Water 42 3.4 Immobilization of Microbial Sorbents on CNTs 50 3.5 Conclusion 54 References 54 4 Plasma Technology: A New Remediation for Water Purification with or without Nanoparticles 63 Pankaj Attri, Bharti Arora, Rohit Bhatia, P. Venkatesu and Eun Ha Choi 4.1 Introduction 63 4.2 Water Purification Using Advanced Oxidation Processes (AOP) 64 4.3 Nanoparticle Synthesis Using Plasma and Its Application towards Water Purification 65 4.4 Application of Plasma for Water Purification 67 4.5 Combined Action of Nanoparticles and Plasma for Water Purification 73 4.6 Conclusion 74 References 75 5 Polysaccharide-Based Nanosorbents in Water Remediation 79 R.B. Shrivastava, P. Singh, J. Bajpai and A.K. Bajpai 5.1 Introduction 80 5.2 Water Pollution 81 5.3 Hazardous Effects of Toxic Metal Ions 85 5.4 Technologies for Water Remediation 87 5.5 Shortcomings of the Technologies Used for Water Remediation 89 5.6 Nanotechnology 90 5.7 Polysaccharides 95 5.8 Advantages of Using Polysaccharides for Removal of Toxic Metal Ions 104 5.9 Brief Review of the Work Done 106 References 107 Part 3: Membranes & Carbon Nanotubes 115 6 The Use of Carbonaceous Nanomembrane Filter for Organic Waste Removal 117 Farheen Khan, Rizwan Wahab, Mohd. Rashid, Asif Khan, Asma Khatoon, Javed Musarrat and Abdulaziz A.Al-Khedhairy 6.1 Introduction 118 6.2 Organic Wastes and Organic Pollutant 120 6.3 Low-Cost Adsorbents 123 6.4 Heavy Metals 124 6.5 Composite Materials 127 6.6 Carbonaceous Materials 128 6.7 Experimental 132 6.8 Nanomaterials 136 6.9 Summary and Future Directions 139 References 139 7 Carbon Nanotubes in the Removal of Heavy Metal Ions from Aqueous Solution 153 M.A. Mamo and A.K. Mishra 7.1 Introduction 153 7.2 Synthesis of CNTs 155 7.3 Functionalization of Carbon Nanotubes 155 7.4 Adsorption of Heavy Metal Ions on Carbon Nanotubes 160 7.5 Competitive Adsorption 165 7.6 Summary and Conclusion 168 References 168 8 Application of Carbon Nanotube-Polymer Composites and Carbon Nanotube-Semiconductor Hybrids in Water Treatment 183 G. Mamba, X.Y. Mbianda and A.K. Mishra 8.1 Introduction 183 8.2 Classification of Dyes 184 8.3 Conventional Treatment Technologies for Textile Effluent 190 8.4 Conclusion 220 Acknowledgements 221 References 222 9 Advances in Nanotechnologies for Point-of-Use and Point-of-Entry Water Purification 229 Sabelo Dalton Mhlanga and Edward Ndumiso Nxumalo 9.1 Introduction 230 9.2 Nanotechnology-Enabled POU/POE Systems for Drinking Water Treatment 233 9.3 Absorptive Nanocomposites Polymers Based on Cyclodextrins 235 9.4 Nanotechnology-Based Membrane Filtration 244 9.5 Ceramic-Based Filters and Nanofibers 254 9.6 Challenges and Opportunities 259 References 262 Part 4: Nanomaterials 269 10 Mesoporous Materials as Potential Absorbents for Water Purification 271 Ephraim Vunain and Reinout Meijboom 10.1 Introduction 271 10.2 Generalized Synthesis of Mesoporous Materials 272 10.3 Common Method of Synthesizing Silicate Mesoporous Molecular Sieves 276 10.4 Adsorption of Heavy Metals 280 10.5 Conclusions 282 References 283 11 Removal of Fluoride from Potable Water Using Smart Nanomaterial as Adsorbent 285 Dinesh Kumar and Vaishali Tomar 11.1 Introduction 286 11.2 Technologies for Defluoridation 289 11.3 Conclusions 303 Acknowledgement 303 References 303 12 Chemical Nanosensors for Monitoring Environmental Pollution 309 Sadanand Pandey and Shivani B Mishra 12.1 Introduction 309 12.2 Conclusion 325 12.3 Challenges and Future Prospect 326 Acknowledgements 327 References 327 13 Reduction of 4-Nitrophenol as a Model Reaction for Nanocatalysis 333 Jihyang Noh and Reinout Meijboom 13.1 Introduction 333 13.2 Kinetic Evaluation and Mechanism of 4-NP Reduction 337 13.3 Effect of Various Conditions 360 13.4 Synthetic Methods of Metal Nanocomposites and Their 4-NP Catalysis 364 13.5 Conclusion 395 References 395 Part 5: Water Treatment 407 14 Doped Diamond Electrodes for Water Treatment 409 Qingyi Shao, Guangwen Wang, Cairu Shao, Juan Zhang and Shejun Hu 14.1 Introduction 410 14.2 Calculation Method 414 14.3 Calculation Results and Discussions 416 14.4 Conclusions 428 References 430 15 Multifunctional Silver, Copper and Zero Valent Iron Metallic Nanoparticles for Wastewater Treatment 435 S.C.G. Kiruba Daniel, S. Malathi, S. Balasubramanian, M. Sivakumar and T. Anitha Sironmani 15.1 Introduction 436 15.2 Metal Nanoparticles and Microbial Inactivation 437 15.3 Metal Nanoparticles for Heavy Metal and Dye Removal 441 15.4 Multifunctional Hybrid Nanoparticles - Ag, Cu and ZVI 443 15.5 Mechanism of Action 445 15.6 Concluding Remarks and Future Trends 448 Acknowledgement 448 References 448 16 Iron Oxide Materials for Photo-Fenton Conversion of Water Pollutants 459 S.A.C. Carabineiro, A.M.T. Silva, C.G. Silva, R.A. Segundo, P.B. Tavares, N. Bogdanchikova, J.L. Figueiredo and J.L. Faria 16.1 Introduction 460 16.2 Experimental 461 16.3 Results and Discussion 463 16.4 Conclusions 471 Acknowledgments 472 References 472 17 Nanomaterials with Uniform Composition in Wastewater Treatment and Their Applications 475 Farheen Khan and Rizwan Wahab 17.1 Introduction 476 17.2 Experimental 488 17.3 Effects of Pollutants on Health and the Environment 490 17.4 Summary and Future Directions 499 References 500 Index 513 .

No hay comentarios en este titulo.

para aportar su opinión.

Con tecnología Koha