Structural analysis : with applications to aerospace structures / O.A. Bauchau, J.I. Craig

Por: Bauchau, O. AColaborador(es): Craig, J.ITipo de material: TextoTextoSeries Solid mechanics and its applications ; 163Detalles de publicación: Dordrecht : Springer, 2009 Descripción: XXII, 943 p. : il.; 25ISBN: 9789048125159Tema(s): Análisis estructural (Ingeniería) | Aviones -- Fuselaje | Materiales compuestos | Aviones -- Diseño y construcciónResumen: The authors and their colleagues developed this text over many years, teaching undergraduate and graduate courses in structural analysis courses at the Daniel Guggenheim School of Aerospace Engineering of the Georgia Institute of Technology. The emphasis is on clarity and unity in the presentation of basic structural analysis concepts and methods. The equations of linear elasticity andbasic constitutive behaviour of isotropic and composite materials are reviewed. The text focuses on the analysis of practical structural components including bars, beams, and plates. Particular attention is devoted to the analysis ofthin-walled beams under bending, shearing, and torsion. Advanced topics such as warping, non-uniform torsion, shear deformations, thermal effect and plastic deformations are addressed. A unified treatment of work and energy principles is provided that naturally leads to an examination of approximate analysis methods including an introduction to matrix and finite element methods.This teaching tool based on practical situations and thorough methodology should provevaluable to both lecturers and students of structural analysis in engineeringworldwide.INDICE: Part I Basic tools and concepts; 1 Basic Equations of Linear Elasticity .1.1 The concept of stress; 1.1.1 The state of stress at a point; 1.1.2 Volume equilibrium equations; 1.1.3 Surface equilibrium equations; 1.2 Analysis of the state of stress at a point; 1.2.1 Stress components acting on an arbitrary face; 1.2.2 Principal stresses; 1.2.3 Rotation of stresses; 1.2.4 Problems; 1.3 The state of plane stress; 1.3.1 Equilibrium equations; 1.3.2 Stressesacting on an arbitrary face within the sheet; 1.3.3 Principal stresses;1.3.4 Rotation of stresses; 1.3.5 Special states of stress; 1.3.6 Mohr's circle for plane stress; 1.3.7 Lamé's ellipse; 1.3.8 Problems; 1.4 The concept of strain;1.4.1 The state of strain at a point; 1.4.2 The volumetric strain; 1.5 Analysis of the state of strain at a point; 1.5.1 Rotation of strains 1.5.2 Principal strains; 1.6 The state of plane strain; 1.6.1 Strain-displacement relations for plane strain; 1.6.2 Rotation of strains; 1.6.3 Principal strains; 1.6.4 Mohr's circle for plane strain; 1.7 Measurement of strains; 1.7.1 Problems; 1.8 Strain compatibility equations; 2 Constitutive Behavior of Materials; 2.1 Constitutive laws for isotropic materials; 2.1.1 Homogeneous, isotropic, linear elastic materials; 2.1.2 Thermal effects; 2.1.3 Problems; 2.1.4 Ductile materials; 2.1.5 Brittle materials; 2.2 Allowable stress; 2.3 Yielding under combined loading; 2.3.1 Tresca's criterion; 2.3.2 Von Mises' criterion; 2.3.3 ComparingTresca's and von Mises' criteria;2.3.4 Problems; 2.4 Material selection for structural performance; 2.4.1 Strength design; 2.4.2 Stiffness design 2.4.3 Buckling design; 2.5 Composite materials; 2.5.1 Basic characteristics;2.5.2 Stress diffusion in a composite; 2.6 Constitutive laws for anisotropic materials; 2.6.1 Constitutive laws for a lam
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Inicie sesión para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca de origen Signatura URL Estado Fecha de vencimiento Código de barras Reserva de ítems Bibliografía recomendada
Manuales 03. BIBLIOTECA INGENIERÍA PUERTO REAL
624.04/BAU/str (Navegar estantería(Abre debajo)) Texto completo Disponible   Ubicación en estantería | Bibliomaps® 3744180551

ELEMENTOS ESTRUCTURALES AERONAÚTICOS GRADO EN INGENIERÍA AEROESPACIAL Asignatura actualizada 2023-2024

ESTRUCTURAS AERONAÚTICAS GRADO EN INGENIERÍA AEROESPACIAL Asignatura actualizada 2023-2024

Total de reservas: 0

Bibliografía

The authors and their colleagues developed this text over many years, teaching undergraduate and graduate courses in structural analysis courses at the Daniel Guggenheim School of Aerospace Engineering of the Georgia Institute of Technology. The emphasis is on clarity and unity in the presentation of basic structural analysis concepts and methods. The equations of linear elasticity andbasic constitutive behaviour of isotropic and composite materials are reviewed. The text focuses on the analysis of practical structural components including bars, beams, and plates. Particular attention is devoted to the analysis ofthin-walled beams under bending, shearing, and torsion. Advanced topics such as warping, non-uniform torsion, shear deformations, thermal effect and plastic deformations are addressed. A unified treatment of work and energy principles is provided that naturally leads to an examination of approximate analysis methods including an introduction to matrix and finite element methods.This teaching tool based on practical situations and thorough methodology should provevaluable to both lecturers and students of structural analysis in engineeringworldwide.INDICE: Part I Basic tools and concepts; 1 Basic Equations of Linear Elasticity .1.1 The concept of stress; 1.1.1 The state of stress at a point; 1.1.2 Volume equilibrium equations; 1.1.3 Surface equilibrium equations; 1.2 Analysis of the state of stress at a point; 1.2.1 Stress components acting on an arbitrary face; 1.2.2 Principal stresses; 1.2.3 Rotation of stresses; 1.2.4 Problems; 1.3 The state of plane stress; 1.3.1 Equilibrium equations; 1.3.2 Stressesacting on an arbitrary face within the sheet; 1.3.3 Principal stresses;1.3.4 Rotation of stresses; 1.3.5 Special states of stress; 1.3.6 Mohr's circle for plane stress; 1.3.7 Lamé's ellipse; 1.3.8 Problems; 1.4 The concept of strain;1.4.1 The state of strain at a point; 1.4.2 The volumetric strain; 1.5 Analysis of the state of strain at a point; 1.5.1 Rotation of strains 1.5.2 Principal strains; 1.6 The state of plane strain; 1.6.1 Strain-displacement relations for plane strain; 1.6.2 Rotation of strains; 1.6.3 Principal strains; 1.6.4 Mohr's circle for plane strain; 1.7 Measurement of strains; 1.7.1 Problems; 1.8 Strain compatibility equations; 2 Constitutive Behavior of Materials; 2.1 Constitutive laws for isotropic materials; 2.1.1 Homogeneous, isotropic, linear elastic materials; 2.1.2 Thermal effects; 2.1.3 Problems; 2.1.4 Ductile materials; 2.1.5 Brittle materials; 2.2 Allowable stress; 2.3 Yielding under combined loading; 2.3.1 Tresca's criterion; 2.3.2 Von Mises' criterion; 2.3.3 ComparingTresca's and von Mises' criteria;2.3.4 Problems; 2.4 Material selection for structural performance; 2.4.1 Strength design; 2.4.2 Stiffness design 2.4.3 Buckling design; 2.5 Composite materials; 2.5.1 Basic characteristics;2.5.2 Stress diffusion in a composite; 2.6 Constitutive laws for anisotropic materials; 2.6.1 Constitutive laws for a lam

No hay comentarios en este titulo.

para aportar su opinión.

Con tecnología Koha