Information processing by neuronal populations / edited by Christian Hölscher, Matthias Munk

Colaborador(es): Hölscher, Christian | Munk, MatthiasTipo de material: TextoTextoDetalles de publicación: Cambridge : Cambridge University, 2008 Descripción: XII, 471 p. : il., gráf. ; 25 cmISBN: 978-0-521-87303-1Tema(s): Redes neuronales (Neurobiología) | Neuronas -- Fisiología | Cerebro -- FisiologíaResumen: Research in the area of neuroscience and brain functions has made extraordinary progress in the last 50 years, in particular with the advent of novel methods that enables us to look at the properties of neuroanatomy and neurophysiology in much finer detail, and even at the activity of living brains during the performance of tasks. However, the question of how information is actually represented and encoded by neurons is still one of the "final frontiers" of neuroscience, and surprisingly little progress has been made here. How information is encoded in the brain has captivated medics, scientists, and philosophers for centuries. Scholars such as Leonardo da Vinci or René Descartes had already an astonishingly detailed knowledge of the anatomy of the brain, and had made suggestions that it is the brain that processes information and even harbors the seat of the personality or of the soul. However, whenever suggestions are brought forward how information might be processed and represented in the brain, these often turn out to be simplistic and idealistic. These rarely add up to more than a kind of "homunculus" that somehow receives information that is received via the eyes or the ears. This model only transfers the problem of information representation from the brain to the homunculus. One problem with the research of information encoding is that it is completely counter-intuitive. Often it is very helpful to explain complex anatomical and functional processes with mental images or sketches that compare a difficult, unknown process with objects and machines of everyday use that people can easily picture. Unfortunately, it is impossible to do so with the topic of information encoding without ending up with comparisons that convey a completely wrong message. In the past, the brain had been compared to machines that were in use at the time, e.g. Descartes compared the nervous system to water pipeline networks that convey information via liquid-filled tubes to the brain ventricles, where the information is gathered and presented to the pineal gland, the proposed seat of the soul. Later, the brain had been compared to a telephone exchange, with information arriving from the outside at the "central switchboard" where it is processed, and leaving the brain through outgoing lines. More recently, the brain has been compared to a computer. However, none of these images actually really explains how the brain processes information, since the architecture and the actual algorithms that govern information processing in neuronal populations are completely different from a computer that runs a piece of software on a silicon chip. The reason for this is based in the very counter-intuitive process of translating information about the real world (e.g. the color of a plant) into abstract symbols or codes that have nothing in common with the original information. It is difficult to explain to the lay person that a digital camera translates an image into rows of zero
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Inicie sesión para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca de origen Signatura URL Estado Fecha de vencimiento Código de barras Reserva de ítems
Monografías 03. BIBLIOTECA INGENIERÍA PUERTO REAL
Depósito-612/INF (Navegar estantería(Abre debajo)) Texto completo Disponible   Ubicación en estantería | Bibliomaps® 3742947625
Total de reservas: 0

Índice

Bibliografía

Research in the area of neuroscience and brain functions has made extraordinary progress in the last 50 years, in particular with the advent of novel methods that enables us to look at the properties of neuroanatomy and neurophysiology in much finer detail, and even at the activity of living brains during the performance of tasks. However, the question of how information is actually represented and encoded by neurons is still one of the "final frontiers" of neuroscience, and surprisingly little progress has been made here. How information is encoded in the brain has captivated medics, scientists, and philosophers for centuries. Scholars such as Leonardo da Vinci or René Descartes had already an astonishingly detailed knowledge of the anatomy of the brain, and had made suggestions that it is the brain that processes information and even harbors the seat of the personality or of the soul. However, whenever suggestions are brought forward how information might be processed and represented in the brain, these often turn out to be simplistic and idealistic. These rarely add up to more than a kind of "homunculus" that somehow receives information that is received via the eyes or the ears. This model only transfers the problem of information representation from the brain to the homunculus. One problem with the research of information encoding is that it is completely counter-intuitive. Often it is very helpful to explain complex anatomical and functional processes with mental images or sketches that compare a difficult, unknown process with objects and machines of everyday use that people can easily picture. Unfortunately, it is impossible to do so with the topic of information encoding without ending up with comparisons that convey a completely wrong message. In the past, the brain had been compared to machines that were in use at the time, e.g. Descartes compared the nervous system to water pipeline networks that convey information via liquid-filled tubes to the brain ventricles, where the information is gathered and presented to the pineal gland, the proposed seat of the soul. Later, the brain had been compared to a telephone exchange, with information arriving from the outside at the "central switchboard" where it is processed, and leaving the brain through outgoing lines. More recently, the brain has been compared to a computer. However, none of these images actually really explains how the brain processes information, since the architecture and the actual algorithms that govern information processing in neuronal populations are completely different from a computer that runs a piece of software on a silicon chip. The reason for this is based in the very counter-intuitive process of translating information about the real world (e.g. the color of a plant) into abstract symbols or codes that have nothing in common with the original information. It is difficult to explain to the lay person that a digital camera translates an image into rows of zero

No hay comentarios en este titulo.

para aportar su opinión.

Con tecnología Koha